Invariant Clusters for Hybrid Systems
نویسندگان
چکیده
In this paper, we propose an approach to automatically compute invariant clusters for semialgebraic hybrid systems. An invariant cluster for an ordinary differential equation (ODE) is a multivariate polynomial invariant g(~u, ~x) = 0, parametric in ~u, which can yield an infinite number of concrete invariants by assigning different values to ~u so that every trajectory of the system can be overapproximated precisely by a union of concrete invariants. For semialgebraic systems, which involve ODEs with multivariate polynomial vector flow, invariant clusters can be obtained by first computing the remainder of the Lie derivative of a template multivariate polynomial w.r.t. its Gröbner basis and then solving the system of polynomial equations obtained from the coefficients of the remainder. Based on invariant clusters and sum-of-squares (SOS) programming, we present a new method for the safety verification of hybrid systems. Experiments on nonlinear benchmark systems from biology and control theory show that our approach is effective and efficient.
منابع مشابه
Generating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton
Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...
متن کاملRobust Controlled Invariant Sets for a class of Uncertain Hybrid Systems
Invariant set theory has been widely studied in the literature, see for example [1, 2] and reference therein. [1] gives a compressive review of the invariant set theory. [2] brings together some of the main ideas in set invariance theory and places them in a general, nonlinear setting. A similar concept, maximal safety set, has been studied in the literature of hybrid systems. The authors of [7...
متن کاملTime-Invariant State Feedback Control Laws for a Special Form of Underactuated Nonlinear Systems Using Linear State Bisection
Linear state bisection is introduced as a new method to find time-invariant state feedback control laws for a special form of underactuated nonlinear systems. The specialty of the systems considered is that every unactuated state should be coupled with at least two directly actuated states. The basic idea is based on bisecting actuated states and using linear combinations with adjustable parame...
متن کاملEntropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملRobust gain-scheduled control of linear parameter-varying systems with uncertain scheduling parameters in the presence of the time-invariant uncertainties
In this paper, a new approach is presented to design a gain-scheduled state-feedback controller for uncertain linear parameter-varying systems. It is supposed that the state-space matrices of them are the linear combination of the uncertain scheduling parameters. It is assumed that the existed uncertainties are of type of time-invariant parametric uncertainties with specified intervals. Simulta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1605.01450 شماره
صفحات -
تاریخ انتشار 2016